X

noc17-me13@nptel.iitm.ac.in ▼

Courses » Fundamentals of Acoustics

Announcements Course Forum Progress Mentor

Unit 3 - Week 02: Concept Review ✓

Course outline

How to access the portal?

Week 01: Introduction and Terminology

Week 02: Concept Review

- Lesson 1: Important
 Mathematical
 Concepts Complex
 Algebra
- Lesson 2: Important
 Mathematical
 Concepts Complex
 Time
 Signals
- Lesson 3: Important
 Mathematical
 Concepts-Transfer
 Function
- Lesson 4:

Week 2 Assignment /	
The due date for submitting this assignment has passed. Due on 2017-02-09, 11:59	IST.
Submitted assignment	
1) Complex signals have	1 point
magnitude.phase.both magnitude and phase.neither magnitude nor phase.	
2) Consider a signal, $x(t) = Re(Ae^{(jD+(B-jC)jt)}).$	1 point
What is the phase of $x(t)$?(A,B, C and D are positive constants)	
ABCD	
3) Consider a signal, $x(t) = Re(Ae^{(jD+(B-jC)jt)}).$	1 point
What can we conclude about decay or growth of $x(t)$?(A,B, C and D are positive constants)	
 x(t) will grow with rate of growth of C. x(t) will grow with rate of growth of B. x(t) will decay with rate of decay of C. x(t) will decay with rate of decay of B. 	
4) Which of the following systems is linear in 'X'?	1 point

Important
Mathematica
Concepts-
Pole Zero
Plot

Lesson 5: Important Mathematical Concepts -

Bode Plot For Simple

- Pole
- Lesson 6: Important Mathematical Concepts -Bode Plot For Simple Zero
- Quiz: Week 2 Assignment
- Week 2 Assignment Solution

Week 03: Wave equation

Week 04: Transmission line equations

Week 05: 1-D Waves

Week 06: Power and spherical waves

Week 07: Spherical waves and interference

Week 08: Directivity and mufflers

Week 09: Sound in rooms

$y(t) = \sin(x(t))$ $y(t) = \log(x(t))$ $y(t) = \cos(x(t))$ $y(t) = dx(t)/dt$	
5)What is an ideal value of system function at poles?	1 point
ZeroUnityInfinityFinite and non-zero	
6) Which of the following option is not correct regarding the transfer function?	1 point
 Transfer function is defined as a mathematical representation of a syste response with respect to stimulus. Transfer function is applied in transient response region of the system. Transfer function can be applied to linear system. All the options are correct. 	m's
7) Which of the following option can be considered as a transfer function?	1 point
H(s)=(Output current)/(Input current) H(s)=(Output current)/(Input voltage) H(s)=(Output voltage)/(Input current) All of the options can be considered as transfer functions.	
8) If $H(\omega)=1/\omega$, how is $H(\omega)$ represented on the magnitude Bode plot?	1 point
-10 log (ω) dB -20 log (ω) dB -40 log (ω) dB -60 log (ω) dB	

Previous Page

End

Week 10: Reverb time and FFT

Week 11: Weighting and loudness

Week 12: Miscellaneous topics and closure

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - G+1 0

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

